Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2316456120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055737

RESUMO

The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fenômenos Mecânicos , Vinculina/metabolismo , Movimento Celular/fisiologia , Adesão Celular/fisiologia
2.
Biochem Biophys Res Commun ; 682: 308-315, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37837751

RESUMO

Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.


Assuntos
Caderinas , Células Epiteliais , alfa Catenina/metabolismo , Adesão Celular/fisiologia , Caderinas/metabolismo , Células Epiteliais/metabolismo
3.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645773

RESUMO

Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.

4.
Nat Commun ; 14(1): 3867, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391402

RESUMO

Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies.


Assuntos
Núcleo Celular , Lâmina Nuclear , Laminas , Membrana Nuclear , Cromatina
5.
Biophys J ; 122(18): 3630-3645, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36617192

RESUMO

Epithelial cells lining a gland and cells grown in a soft extracellular matrix polarize with apical proteins exposed to the lumen and basal proteins in contact with the extracellular matrix. Alterations to polarity, including an apical-out polarity, occur in human cancers. Although some aberrant polarity states may result from altered protein trafficking, recent observations of an extraordinary tissue-level inside-out unfolding suggest an alternative pathway for altered polarity. Because mechanical alterations are common in human cancer, including an upregulation of RhoA-mediated actomyosin tension in acinar epithelia, we explored whether perturbing mechanical homeostasis could cause apical-out eversion. Acinar eversion was robustly induced by direct activation of RhoA in normal and tumor epithelial acini, or indirect activation of RhoA through blockage of ß1-integrins, disruption of the LINC complex, oncogenic Ras activation, or Rac1 inhibition. Furthermore, laser ablation of a portion of the untreated acinus was sufficient to induce eversion. Analyses of acini revealed high curvature and low phosphorylated myosin in the apical cell surfaces relative to the basal surfaces. A vertex-based mathematical model that balances tension at cell-cell interfaces revealed a fivefold greater basal cell surface tension relative to the apical cell surface tension. The model suggests that the difference in surface energy between the apical and basal surfaces is the driving force for acinar eversion. Our findings raise the possibility that a loss of mechanical homeostasis may cause apical-out polarity states in human cancers.


Assuntos
Células Epiteliais , Matriz Extracelular , Humanos , Membrana Celular/metabolismo , Integrina beta1/metabolismo , Polaridade Celular/fisiologia
6.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711698

RESUMO

Collective cell migration (CCM) plays important roles in development, physiological, and pathological processes. A key feature of CCM is the dynamic mechanical coupling between cells, which enables both long-range coordination and local rearrangements. This coupling requires the ability of cell adhesions to adapt to forces. Recent efforts have identified key proteins and implicated cellular-scale mechanical properties, but how key proteins give rise to these larger-scale mechanical processes is unclear. Using force-sensitive biosensors, cell migration assays, and molecular clutch models, we sought a molecular understanding of adhesion strengthening that could bridge this gap. We found that the mechanical linker protein vinculin bears substantial loads at AJs, FAs, and in the cytoplasm during epithelial sheet migration, and we identified a switch-like residue on vinculin that regulates its conformation and loading at the AJs during CCM. In vinculin KO-rescue, this switch jointly controlled the speed and coupling length-scale of CCM, which suggested changes in adhesion-based friction. To test this, we developed molecularly detailed friction clutch models of the FA and AJ. They show that open, loaded vinculin increases friction in adhesive structures, with larger affects observed in AJs. Thus, this work elucidates how load-bearing linker proteins can be regulated to alter mechanical properties of cells and enable rapid tuning of mechanical coupling in CCM.

7.
Biophys J ; 122(23): 4518-4527, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350000

RESUMO

Transmission of cell-generated (i.e., endogenous) tension at cell-cell contacts is crucial for tissue shape changes during morphogenesis and adult tissue repair in tissues such as epithelia. E-cadherin-based adhesions at cell-cell contacts are the primary means by which endogenous tension is transmitted between cells. The E-cadherin-ß-catenin-α-catenin complex mechanically couples to the actin cytoskeleton (and thereby the cell's contractile machinery) both directly and indirectly. However, the key adhesion constituents required for substantial endogenous force transmission at these adhesions in cell-cell contacts are unclear. Due to the role of α-catenin as a mechanotransducer that recruits vinculin at cell-cell contacts, we expected α-catenin to be essential for sustaining normal levels of force transmission. Instead, using the traction force imbalance method to determine the inter-cellular force at a single cell-cell contact between cell pairs, we found that it is vinculin that is essential for sustaining normal levels of endogenous force transmission, with absence of vinculin decreasing the inter-cellular tension by over 50%. Our results constrain the potential mechanical pathways of force transmission at cell-cell contacts and suggest that vinculin can transmit forces at E-cadherin adhesions independent of α-catenin, possibly through ß-catenin. Furthermore, we tested the ability of lateral cell-cell contacts to withstand external stretch and found that both vinculin and α-catenin are essential to maintain cell-cell contact stability under external forces.


Assuntos
Caderinas , beta Catenina , alfa Catenina/metabolismo , Vinculina/metabolismo , Caderinas/metabolismo , Adesão Celular , Actinas/metabolismo
8.
Mol Biol Cell ; 33(11): ar93, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35921161

RESUMO

Vinculin is a protein found in both focal adhesions (FAs) and adherens junctions (AJs) which regulates actin connectivity to these structures. Many studies have demonstrated that mechanical perturbations of cells result in enhanced recruitment of vinculin to FAs and/or AJs. Likewise, many other studies have shown "cross-talk" between FAs and AJs. Vinculin itself has been suggested to be a probable regulator of this adhesion cross-talk. In this study we used MDCK as a model system of epithelia, developing cell lines in which vinculin recruitment was reduced or enhanced at AJs. Careful analysis of these cells revealed that perturbing vinculin recruitment to AJs resulted in a reduction of detectable FAs. Interestingly the cross-talk between these two structures was not due to a limited pool of vinculin, as increasing expression of vinculin did not rescue FA formation. Instead, we demonstrate that vinculin translocation between AJs and FAs is necessary for actin cytoskeleton rearrangements that occur during cell migration, which is necessary for large, well-formed FAs. Last, we show using a wound assay that collective cell migration is similarly hindered when vinculin recruitment is reduced or enhanced at AJs, highlighting that vinculin translocation between each compartment is necessary for efficient collective migration.


Assuntos
Junções Aderentes , Adesões Focais , Junções Aderentes/metabolismo , Cateninas/metabolismo , Adesão Celular , Adesões Focais/metabolismo , Vinculina/metabolismo , alfa Catenina/metabolismo
9.
Mol Biol Cell ; 33(11): ar101, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35895088

RESUMO

Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.


Assuntos
Cromatina , Células Endoteliais , Acetilação , Cromatina/metabolismo , Células Endoteliais/metabolismo , Histonas/metabolismo , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular
10.
Mol Biol Cell ; 32(18): 1654-1663, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34191529

RESUMO

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a structure consisting of nesprin, SUN, and lamin proteins. A principal function of the LINC complex is anchoring the nucleus to the actin, microtubule, and intermediate filament cytoskeletons. The LINC complex is present in nearly all cell types, including endothelial cells. Endothelial cells line the innermost surfaces of blood vessels and are critical for blood vessel barrier function. In addition, endothelial cells have specialized functions, including adaptation to the mechanical forces of blood flow. Previous studies have shown that depletion of individual nesprin isoforms results in impaired endothelial cell function. To further investigate the role of the LINC complex in endothelial cells we utilized dominant negative KASH (DN-KASH), a dominant negative protein that displaces endogenous nesprins from the nuclear envelope and disrupts nuclear-cytoskeletal connections. Endothelial cells expressing DN-KASH had altered cell-cell adhesion and barrier function, as well as altered cell-matrix adhesion and focal adhesion dynamics. In addition, cells expressing DN-KASH failed to properly adapt to shear stress or cyclic stretch. DN-KASH-expressing cells exhibited impaired collective cell migration in wound healing and angiogenesis assays. Our results demonstrate the importance of an intact LINC complex in endothelial cell function and homeostasis.


Assuntos
Adesão Celular/fisiologia , Complexos Multiproteicos/metabolismo , Adaptação Fisiológica , Fenômenos Biomecânicos , Movimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Transferência Ressonante de Energia de Fluorescência , Adesões Focais/genética , Adesões Focais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Mecânico , Imagem com Lapso de Tempo , Cicatrização
11.
Curr Biol ; 29(17): 2826-2839.e4, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402305

RESUMO

The nucleoskeleton and cytoskeleton are important protein networks that govern cellular behavior and are connected together by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Mutations in LINC complex components may be relevant to cancer, but how cell-level changes might translate into tissue-level malignancy is unclear. We used glandular epithelial cells in a three-dimensional culture model to investigate the effect of perturbations of the LINC complex on higher order cellular architecture. We show that inducible LINC complex disruption in human mammary epithelial MCF-10A cells and canine kidney epithelial MDCK II cells mechanically destabilizes the acinus. Lumenal collapse occurs because the acinus is unstable to increased mechanical tension that is caused by upregulation of Rho-kinase-dependent non-muscle myosin II motor activity. These findings provide a potential mechanistic explanation for how disruption of LINC complex may contribute to a loss of tissue structure in glandular epithelia.


Assuntos
Células Acinares/fisiologia , Citoesqueleto/fisiologia , Matriz Nuclear/fisiologia , Animais , Fenômenos Biomecânicos , Cães , Humanos , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...